Публікація:
Darboux transformation of generalized Jacobi matrices

Вантажиться...
Ескіз

Дата

Автори

Kovalyov, Ivan

Назва журналу

ISSN журналу

Назва тому

Видавець

Дослідницькі проекти

Організаційні одиниці

Випуск журналу

Анотація

Let J be a monic generalized Jacobi matrix, i.e. a three-diagonal block matrix of special form, introduced by M. Derevyagin and V. Derkach in 2004. We find conditions for a monic generalized Jacobi matrix J to admit a factorization J = LU with L and U being lower and upper triangular two-diagonal block matrices of special form. In this case the Darboux transformation of J defined by J (p) = UL is shown to be also a monic generalized Jacobi matrix. Analogues of Christoffel formulas for polynomials of the first and the second kind, corresponding to the Darboux transformation J (p) are found.

Опис

Ключові слова

Darboux transformation, indefinite inner product, m-function, monic generalized Jacobi matrix, triangular factorization

Бібліографічний опис

Kovalyov, I. Darboux transformation of generalized Jacobi matrices / I. Kovalyov // Methods of Functional Analysis and Topology : Quarterly journal. – 2014. – Vol. 20, № 4. – pp. 301-320.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced