Публікація: Structural and self-similar properties of representations of one class of fractal functions and distributions of their values
Вантажиться...
Дата
Назва журналу
ISSN журналу
Назва тому
Видавець
Dragomanov Ukrainian State University Publ.
Анотація
We consider the Q2-representation of numbers from the interval [0; 1], defined by parameters q0, q1 ∈ (0; 1), and expansion of an arbitrary number x ∈ [0; 1] by the series x = α1q1−α1 + where αk ∈ {0, 1} ≡ A, q0 + q1 = 1. We study structural, local, and global topological, metric, and fractal properties of the function defined by the equality f ϕ(x = ∆Q2 α1α2α3...αnαn+1 ) = ∆Q2 ϕ1(α1,α2)ϕ2(α2,α3)...ϕn(αn,αn+1)..., where ϕ = (ϕn) is a given sequence of functions (ϕ : (0; 1)2 → (0; 1)). For a random variable Y = F (X), where X is a random variable with a given distribution, we investigate the Lebesgue structure and spectral properties.
Опис
Ключові слова
Q∗ 2-representation of numbers, Q2-representation of num-bers, fractal functions, Cantor type set
Бібліографічний опис
Pratsiovytyi, M. Structural and self-similar properties of representations of one class of fractal functions and distributions of their values / M. Pratsiovytyi, S. Ratushniak // Voronoï's Impact on Modern Science. Proceedings of the Sixth International Conference on Analytic Number Theory and Spatial Tessellations : In two volumes / Mykola Pratsiovytyi and Dmytro Karvatskyi (Eds.) ; Halyna Syta (Compil.) ; Dragomanov Ukrainian State University. - Kyiv : Dragomanov Ukrainian State University Publ., 2025. - Vol. 2. - P. 199-207.
