Публікація:
Structural and self-similar properties of representations of one class of fractal functions and distributions of their values

Вантажиться...
Ескіз

Дата

Назва журналу

ISSN журналу

Назва тому

Видавець

Dragomanov Ukrainian State University Publ.

Дослідницькі проекти

Організаційні одиниці

Випуск журналу

Анотація

We consider the Q2-representation of numbers from the interval [0; 1], defined by parameters q0, q1 ∈ (0; 1), and expansion of an arbitrary number x ∈ [0; 1] by the series x = α1q1−α1 + where αk ∈ {0, 1} ≡ A, q0 + q1 = 1. We study structural, local, and global topological, metric, and fractal properties of the function defined by the equality f ϕ(x = ∆Q2 α1α2α3...αnαn+1 ) = ∆Q2 ϕ1(α1,α2)ϕ2(α2,α3)...ϕn(αn,αn+1)..., where ϕ = (ϕn) is a given sequence of functions (ϕ : (0; 1)2 → (0; 1)). For a random variable Y = F (X), where X is a random variable with a given distribution, we investigate the Lebesgue structure and spectral properties.

Опис

Ключові слова

Q∗ 2-representation of numbers, Q2-representation of num-bers, fractal functions, Cantor type set

Бібліографічний опис

Pratsiovytyi, M. Structural and self-similar properties of representations of one class of fractal functions and distributions of their values / M. Pratsiovytyi, S. Ratushniak // Voronoï's Impact on Modern Science. Proceedings of the Sixth International Conference on Analytic Number Theory and Spatial Tessellations : In two volumes / Mykola Pratsiovytyi and Dmytro Karvatskyi (Eds.) ; Halyna Syta (Compil.) ; Dragomanov Ukrainian State University. - Kyiv : Dragomanov Ukrainian State University Publ., 2025. - Vol. 2. - P. 199-207.

Endorsement

Review

Supplemented By

Referenced By